Semiclassical evolution with low regularity
نویسندگان
چکیده
We prove semiclassical estimates for the Schrödinger-von Neumann evolution with C 1 , potentials and density matrices whose square root have either Wigner functions low regularity independent of dimension, or matrix elements between Hermite having long range decay. The are settled in different weak topologies apply to initial operators 7 times differentiable, independently dimension. They also N -body quantum dynamics uniformly concentrating pure mixed states without any assumption. In a appendix, we finally estimate dependence dimension constant appearing on Calderón-Vaillancourt Theorem. Nous démontrons des estimations semi-classiques pour l'équation de avec potentiel et densité initiales dont la racine carrée soit une fonction faible régularité indépendante éléments matrice entre fonctions d'Hermite à décroissance lente. Les sont exprimées dans diverses faibles s'appliquent fois différentiable, indépendamment Elles aussi dynamique quantique corps uniformément en et, sans aucune hypothèse régularité, états mixtes ou purs se concentrant limite classique. Enfin, nous estimons un appendice dépendance constante apparaissant le théorème Calderón-Vaillancourt.
منابع مشابه
Semiclassical Second Microlocal Propagation of Regularity and Integrable Systems
We develop a second-microlocal calculus of pseudodifferential operators in the semiclassical setting. These operators test for Lagrangian regularity of semiclassical families of distributions on a manifold X with respect to a Lagrangian submanifold of T X. The construction of the calculus, closely analogous to one performed by Bony in the setting of homogeneous Lagrangians, proceeds via the con...
متن کاملLow-regularity Schrödinger Maps
We prove that the Schrödinger map initial-value problem { ∂ts = s×∆xs on R × [−1, 1]; s(0) = s0 is locally well-posed for small data s0 ∈ H σ0 Q (R ; S), σ0 > (d+ 1)/2, Q ∈ S.
متن کاملSemiclassical Evolution of Dissipative Markovian Systems
A semiclassical approximation for an evolving density operator, driven by a “closed” hamiltonian operator and “open” markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the hamiltonian operator is a quadratic function and the Lindblad operators ...
متن کاملOn the semiclassical evolution of quantum operators
The Heisenberg evolution of a given unitary operator corresponds classically to a fixed canonical transformation that is viewed through a moving coordinate system. The operators that form the bases of the Weyl representation and its Fourier transform, the chord representation, are, respectively, unitary reflection and translation operators. Thus, the general semiclassical study of unitary opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2021
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2021.02.008